元数据管理模块负责维护向量数据库的所有元数据信息,包括集合定义、列模式、索引配置、统计信息等。该模块采用分层架构设计,支持元数据的版本控制、一致性保证和高可用性。
2. 元数据层次结构
2.1 元数据分类
元数据按照作用域和生命周期分为以下层次:
Metadata Hierarchy: ├── System Metadata (系统元数据) │ ├── Database Configuration │ ├── Node Information │ └── Global Settings ├── Schema Metadata (模式元数据) │ ├── Collection Definitions │ ├── Column Schemas │ └── Index Configurations ├── Runtime Metadata (运行时元数据) │ ├── Collection Statistics │ ├── Segment Information │ └── Performance Metrics └── Transaction Metadata (事务元数据) ├── Version Information ├── Lock Information └── Consistency Markers
2.2 数学模型定义
2.2.1 集合元数据
集合元数据定义为八元组:
C M = ( name , uid , uuid , columns , config , state , version , stats ) \mathcal{CM} = (\text{name}, \text{uid}, \text{uuid}, \text{columns}, \text{config}, \text{state}, \text{version}, \text{stats}) CM = ( name , uid , uuid , columns , config , state , version , stats )
其中:
name ∈ Σ ∗ \text{name} \in \Sigma^* name ∈ Σ ∗ :集合名称(字符串)
uid ∈ N \text{uid} \in \mathbb{N} uid ∈ N :唯一数字标识符
uuid ∈ { 0 , 1 } 128 \text{uuid} \in \{0,1\}^{128} uuid ∈ { 0 , 1 } 128 :全局唯一标识符
columns = { C 1 , C 2 , . . . , C n } \text{columns} = \{C_1, C_2, ..., C_n\} columns = { C 1 , C 2 , ... , C n } :列定义集合
config ∈ P \text{config} \in \mathcal{P} config ∈ P :配置参数集合
state ∈ { INIT , SERVING , DROPPED } \text{state} \in \{\text{INIT}, \text{SERVING}, \text{DROPPED}\} state ∈ { INIT , SERVING , DROPPED } :集合状态
version ∈ N \text{version} \in \mathbb{N} version ∈ N :版本号
stats ∈ S \text{stats} \in \mathcal{S} stats ∈ S :统计信息
2.2.2 列元数据
列元数据定义为七元组:
L M = ( name , uid , type , dimension , index_type , params , constraints ) \mathcal{LM} = (\text{name}, \text{uid}, \text{type}, \text{dimension}, \text{index\_type}, \text{params}, \text{constraints}) LM = ( name , uid , type , dimension , index_type , params , constraints )
其中:
name ∈ Σ ∗ \text{name} \in \Sigma^* name ∈ Σ ∗ :列名称
uid ∈ N \text{uid} \in \mathbb{N} uid ∈ N :列唯一标识符
type ∈ T \text{type} \in \mathcal{T} type ∈ T :数据类型
dimension ∈ N + \text{dimension} \in \mathbb{N}^+ dimension ∈ N + :向量维度(仅向量列)
index_type ∈ I \text{index\_type} \in \mathcal{I} index_type ∈ I :索引类型
params ∈ P \text{params} \in \mathcal{P} params ∈ P :索引参数
constraints ∈ C \text{constraints} \in \mathcal{C} constraints ∈ C :约束条件
3. 数据类型系统
3.1 基础数据类型
系统支持以下基础数据类型:
T basic = { INT8 , INT16 , INT32 , INT64 , UINT8 , UINT16 , UINT32 , UINT64 , FLOAT , DOUBLE , STRING , BINARY } \mathcal{T}_{\text{basic}} = \{\text{INT8}, \text{INT16}, \text{INT32}, \text{INT64}, \text{UINT8}, \text{UINT16}, \text{UINT32}, \text{UINT64}, \text{FLOAT}, \text{DOUBLE}, \text{STRING}, \text{BINARY}\} T basic = { INT8 , INT16 , INT32 , INT64 , UINT8 , UINT16 , UINT32 , UINT64 , FLOAT , DOUBLE , STRING , BINARY }
3.2 向量数据类型
向量数据类型定义为:
T vector = T basic × N + × M \mathcal{T}_{\text{vector}} = \mathcal{T}_{\text{basic}} \times \mathbb{N}^+ \times \mathcal{M} T vector = T basic × N + × M
其中:
第一个分量为元素类型
第二个分量为维度
第三个分量为度量类型 M = { L2 , IP , COSINE } \mathcal{M} = \{\text{L2}, \text{IP}, \text{COSINE}\} M = { L2 , IP , COSINE }
3.3 类型兼容性
定义类型兼容性关系 ⪯ \preceq ⪯ :
type 1 ⪯ type 2 ⟺ ∃ f : type 1 → type 2 (无损转换) \text{type}_1 \preceq \text{type}_2 \iff \exists f: \text{type}_1 \rightarrow \text{type}_2 \text{ (无损转换)} type 1 ⪯ type 2 ⟺ ∃ f : type 1 → type 2 ( 无损转换 )
兼容性矩阵:
INT8 INT16 INT32 INT64 FLOAT DOUBLE INT8 ✓ ✓ ✓ ✓ ✓ ✓ INT16 ✗ ✓ ✓ ✓ ✓ ✓ INT32 ✗ ✗ ✓ ✓ ✗ ✓ INT64 ✗ ✗ ✗ ✓ ✗ ✗ FLOAT ✗ ✗ ✗ ✗ ✓ ✓ DOUBLE ✗ ✗ ✗ ✗ ✗ ✓
4. 索引配置管理
4.1 索引类型定义
I = { HNSW , IVF , FLAT , PQ , HASH , BTREE } \mathcal{I} = \{\text{HNSW}, \text{IVF}, \text{FLAT}, \text{PQ}, \text{HASH}, \text{BTREE}\} I = { HNSW , IVF , FLAT , PQ , HASH , BTREE }
4.2 索引参数配置
4.2.1 HNSW参数
P HNSW = { M , ef_construction , ef_search , max_level } \mathcal{P}_{\text{HNSW}} = \{\text{M}, \text{ef\_construction}, \text{ef\_search}, \text{max\_level}\} P HNSW = { M , ef_construction , ef_search , max_level }
参数约束:
M ∈ [ 4 , 64 ] \text{M} \in [4, 64] M ∈ [ 4 , 64 ] :每层最大连接数
ef_construction ∈ [ M , 1000 ] \text{ef\_construction} \in [\text{M}, 1000] ef_construction ∈ [ M , 1000 ] :构建时搜索参数
ef_search ∈ [ k , 1000 ] \text{ef\_search} \in [k, 1000] ef_search ∈ [ k , 1000 ] :搜索时参数
max_level ∈ [ 1 , 16 ] \text{max\_level} \in [1, 16] max_level ∈ [ 1 , 16 ] :最大层数
4.2.2 IVF参数
P IVF = { nlist , nprobe , quantizer_type } \mathcal{P}_{\text{IVF}} = \{\text{nlist}, \text{nprobe}, \text{quantizer\_type}\} P IVF = { nlist , nprobe , quantizer_type }
参数约束:
nlist ∈ [ 1 , N ] \text{nlist} \in [1, \sqrt{N}] nlist ∈ [ 1 , N ] :聚类中心数量
nprobe ∈ [ 1 , nlist ] \text{nprobe} \in [1, \text{nlist}] nprobe ∈ [ 1 , nlist ] :搜索的聚类数量
quantizer_type ∈ { FLAT , PQ } \text{quantizer\_type} \in \{\text{FLAT}, \text{PQ}\} quantizer_type ∈ { FLAT , PQ } :量化器类型
4.3 参数优化
4.3.1 自动参数调优
基于数据特征自动选择最优参数:
P ∗ = arg min P ( α ⋅ BuildTime ( P ) + β ⋅ QueryTime ( P ) + γ ⋅ Memory ( P ) ) \mathcal{P}^* = \arg\min_{\mathcal{P}} \left(\alpha \cdot \text{BuildTime}(\mathcal{P}) + \beta \cdot \text{QueryTime}(\mathcal{P}) + \gamma \cdot \text{Memory}(\mathcal{P})\right) P ∗ = arg min P ( α ⋅ BuildTime ( P ) + β ⋅ QueryTime ( P ) + γ ⋅ Memory ( P ) )
其中 α , β , γ \alpha, \beta, \gamma α , β , γ 为权重参数。
4.3.2 参数推荐算法
Algorithm: Parameter Recommendation Input: dataset D, performance requirements R Output: optimal parameters P* 1. Analyze dataset characteristics: - dimension d = D.dimension - size n = |D| - distribution σ = std(D) 2. Generate candidate parameter sets: candidates = generate_candidates(d, n, σ) 3. For each candidate p in candidates: - score = evaluate_performance(p, D, R) - add (p, score) to results 4. Return argmax(results, key=score)
5. 统计信息管理
5.1 统计信息类型
5.1.1 数据统计
S data = { count , mean , variance , min , max , histogram } \mathcal{S}_{\text{data}} = \{\text{count}, \text{mean}, \text{variance}, \text{min}, \text{max}, \text{histogram}\} S data = { count , mean , variance , min , max , histogram }
对于向量列,统计信息包括:
count ∈ N \text{count} \in \mathbb{N} count ∈ N :向量数量
μ ∈ R d \boldsymbol{\mu} \in \mathbb{R}^d μ ∈ R d :均值向量
Σ ∈ R d × d \boldsymbol{\Sigma} \in \mathbb{R}^{d \times d} Σ ∈ R d × d :协方差矩阵
norm_dist \text{norm\_dist} norm_dist :范数分布直方图
5.1.2 索引统计
S index = { build_time , memory_usage , disk_usage , avg_degree } \mathcal{S}_{\text{index}} = \{\text{build\_time}, \text{memory\_usage}, \text{disk\_usage}, \text{avg\_degree}\} S index = { build_time , memory_usage , disk_usage , avg_degree }
5.1.3 查询统计
S query = { qps , latency_p50 , latency_p95 , latency_p99 , recall } \mathcal{S}_{\text{query}} = \{\text{qps}, \text{latency\_p50}, \text{latency\_p95}, \text{latency\_p99}, \text{recall}\} S query = { qps , latency_p50 , latency_p95 , latency_p99 , recall }
5.2 统计信息更新
5.2.1 增量更新算法
对于均值的增量更新:
μ n + 1 = n ⋅ μ n + x n + 1 n + 1 \boldsymbol{\mu}_{n+1} = \frac{n \cdot \boldsymbol{\mu}_n + \mathbf{x}_{n+1}}{n+1} μ n + 1 = n + 1 n ⋅ μ n + x n + 1
对于方差的增量更新:
σ n + 1 2 = n ⋅ σ n 2 + ( x n + 1 − μ n + 1 ) 2 n + 1 \sigma^2_{n+1} = \frac{n \cdot \sigma^2_n + (x_{n+1} - \mu_{n+1})^2}{n+1} σ n + 1 2 = n + 1 n ⋅ σ n 2 + ( x n + 1 − μ n + 1 ) 2
5.2.2 直方图维护
采用等宽直方图,桶数量 B = ⌈ log 2 ( n ) ⌉ B = \lceil \log_2(n) \rceil B = ⌈ log 2 ( n )⌉ :
bucket i = [ min + i ⋅ max − min B , min + ( i + 1 ) ⋅ max − min B ) \text{bucket}_i = \left[\text{min} + i \cdot \frac{\text{max} - \text{min}}{B}, \text{min} + (i+1) \cdot \frac{\text{max} - \text{min}}{B}\right) bucket i = [ min + i ⋅ B max − min , min + ( i + 1 ) ⋅ B max − min )
6. 版本控制与一致性
6.1 版本控制模型
采用多版本并发控制(MVCC):
V = ( version_id , timestamp , metadata , status ) \mathcal{V} = (\text{version\_id}, \text{timestamp}, \text{metadata}, \text{status}) V = ( version_id , timestamp , metadata , status )
其中:
version_id ∈ N \text{version\_id} \in \mathbb{N} version_id ∈ N :版本标识符
timestamp ∈ R + \text{timestamp} \in \mathbb{R}^+ timestamp ∈ R + :时间戳
metadata \text{metadata} metadata :元数据快照
status ∈ { ACTIVE , DEPRECATED , DELETED } \text{status} \in \{\text{ACTIVE}, \text{DEPRECATED}, \text{DELETED}\} status ∈ { ACTIVE , DEPRECATED , DELETED } :版本状态
6.2 一致性保证
6.2.1 ACID属性
原子性(Atomicity) :元数据操作要么全部成功,要么全部失败
一致性(Consistency) :元数据始终满足完整性约束
隔离性(Isolation) :并发操作互不干扰
持久性(Durability) :已提交的元数据修改永久保存
6.2.2 一致性级别
定义一致性级别:
L = { STRONG , EVENTUAL , WEAK } \mathcal{L} = \{\text{STRONG}, \text{EVENTUAL}, \text{WEAK}\} L = { STRONG , EVENTUAL , WEAK }
强一致性 :所有节点同时看到相同的元数据
最终一致性 :系统最终收敛到一致状态
弱一致性 :不保证一致性,但提供最佳性能
6.3 分布式一致性算法
6.3.1 Raft共识算法
采用Raft算法保证元数据的强一致性:
Raft State Machine: Follower → Candidate → Leader ↑ ↓ ↓ ←─────────┴─────────┘
选举超时:T election ∼ Uniform [ 150 m s , 300 m s ] T_{\text{election}} \sim \text{Uniform}[150ms, 300ms] T election ∼ Uniform [ 150 m s , 300 m s ]
心跳间隔:T heartbeat = 50 m s T_{\text{heartbeat}} = 50ms T heartbeat = 50 m s
6.3.2 元数据复制
采用主从复制模式:
主节点 :处理所有写操作
从节点 :处理读操作,异步复制数据
复制延迟 :Δ t < 100 m s \Delta t < 100ms Δ t < 100 m s
7. 元数据存储
7.1 存储架构
Metadata Storage: ├── In-Memory Cache (内存缓存) │ ├── Hot Metadata │ └── Query Cache ├── Persistent Store (持久化存储) │ ├── Metadata Database │ └── Transaction Log └── Backup Store (备份存储) ├── Snapshot Files └── Incremental Backups
7.2 存储格式
7.2.1 序列化格式
采用Protocol Buffers进行序列化:
message CollectionMeta { string name = 1; uint64 uid = 2; string uuid = 3; repeated ColumnMeta columns = 4; map<string, string> config = 5; CollectionState state = 6; uint64 version = 7; CollectionStats stats = 8; }
7.2.2 压缩算法
采用LZ4压缩算法:
压缩比 :通常达到 2:1 到 4:1
压缩速度 :> 100 MB/s
解压速度 :> 300 MB/s
7.3 索引结构
7.3.1 B+树索引
为元数据建立B+树索引:
键 :集合名称或UID
值 :元数据记录指针
扇出度 :F = 256 F = 256 F = 256
高度 :h = ⌈ log F ( n ) ⌉ h = \lceil \log_F(n) \rceil h = ⌈ log F ( n )⌉
查找时间复杂度:O ( log F n ) O(\log_F n) O ( log F n )
7.3.2 哈希索引
为快速查找建立哈希索引:
h ( key ) = hash ( key ) m o d m h(\text{key}) = \text{hash}(\text{key}) \bmod m h ( key ) = hash ( key ) mod m
其中 m m m 为哈希表大小,通常选择质数。
负载因子:λ = n m ≤ 0.75 \lambda = \frac{n}{m} \leq 0.75 λ = m n ≤ 0.75
8. 缓存管理
8.1 多级缓存架构
Cache Hierarchy: L1: CPU Cache (硬件缓存) ↓ L2: Process Cache (进程内缓存) ↓ L3: Shared Cache (共享缓存) ↓ L4: Distributed Cache (分布式缓存)
8.2 缓存策略
8.2.1 替换算法
采用LRU-K算法:
Score ( item ) = ∑ i = 1 K w i ⋅ ( current_time − access_time i ) \text{Score}(\text{item}) = \sum_{i=1}^{K} w_i \cdot (\text{current\_time} - \text{access\_time}_i) Score ( item ) = ∑ i = 1 K w i ⋅ ( current_time − access_time i )
其中 w i w_i w i 为权重,满足 w 1 > w 2 > . . . > w K w_1 > w_2 > ... > w_K w 1 > w 2 > ... > w K 。
8.2.2 预取策略
基于访问模式的预取:
Algorithm: Metadata Prefetch Input: accessed metadata M Output: prefetch candidates 1. Analyze access pattern of M 2. Find related metadata R = related(M) 3. Calculate prefetch probability: P(r) = frequency(r) * recency(r) * correlation(M, r) 4. Select top-k candidates with highest P(r) 5. Asynchronously load candidates into cache
8.3 缓存一致性
8.3.1 失效策略
采用基于版本的失效机制:
每次元数据更新时增加版本号
缓存项记录对应的版本号
访问时检查版本一致性
8.3.2 更新传播
采用发布-订阅模式传播更新:
Update Propagation: Metadata Update → Event Bus → Cache Invalidation ↓ ↓ ↓ Version++ Publish Event Clear Cache
9. 性能优化
9.1 读写分离
写操作 :路由到主节点
读操作 :路由到从节点或缓存
读写比例 :通常为 9:1
9.2 批量操作
9.2.1 批量读取
Algorithm: Batch Metadata Read Input: metadata keys K = {k₁, k₂, ..., kₙ} Output: metadata values V = {v₁, v₂, ..., vₙ} 1. Partition keys by storage location 2. For each partition P: - Send batch request to corresponding node - Collect results in parallel 3. Merge and return all results
9.2.2 批量写入
采用事务批处理:
将多个写操作组合成一个事务
减少网络往返次数
提高写入吞吐量
9.3 压缩与编码
9.3.1 字典编码
对重复字符串进行字典编码:
Encode ( s ) = { dict_id ( s ) if s ∈ dictionary add_to_dict ( s ) otherwise \text{Encode}(s) = \begin{cases}
\text{dict\_id}(s) & \text{if } s \in \text{dictionary} \\
\text{add\_to\_dict}(s) & \text{otherwise}
\end{cases} Encode ( s ) = { dict_id ( s ) add_to_dict ( s ) if s ∈ dictionary otherwise
9.3.2 增量编码
对版本信息进行增量编码:
Δ Version i = Version i − Version i − 1 \Delta\text{Version}_i = \text{Version}_i - \text{Version}_{i-1} Δ Version i = Version i − Version i − 1
10. 监控与诊断
10.1 性能指标
元数据读取延迟 :P95 < 5ms
元数据写入延迟 :P95 < 20ms
缓存命中率 :> 95%
存储空间利用率 :< 80%
10.2 健康检查
10.2.1 一致性检查
定期验证元数据一致性:
Algorithm: Consistency Check 1. For each metadata item M: - Compute checksum C₁ on primary - Compute checksum C₂ on replica - If C₁ ≠ C₂: report inconsistency 2. Generate consistency report
10.2.2 性能监控
实时监控关键指标:
11. 故障恢复
11.1 备份策略
11.1.1 全量备份
定期创建完整的元数据快照:
11.1.2 增量备份
基于事务日志的增量备份:
频率 :每小时一次
保留期 :7天
恢复点目标(RPO) :< 1小时
11.2 恢复机制
11.2.1 点时间恢复
恢复到指定时间点:
Algorithm: Point-in-Time Recovery Input: target timestamp T Output: recovered metadata state 1. Find latest full backup before T 2. Apply incremental backups up to T 3. Verify data integrity 4. Rebuild indexes if necessary
11.2.2 自动故障转移
当主节点故障时自动切换:
检测时间 :< 30秒
切换时间 :< 60秒
数据丢失 :< 1秒的数据